Примеры применения хроматографии в анализе объектов окружающей среды

Объектами газохроматографического определения в водных средах могут быть растворенные газы и органические соединения с молекулярной массой от 16-30 (метан, этан) до 400-500 и более. Состав примесей может довольно быстро изменяться вследствие целого ряда причин. Поэтому время от момента отбора проб до выполнения анализа или предшествующих ему операций, обеспечивающих консервацию их состава, должно быть по возможности малым.

Причины изменения состава примесей водной среды, определяемых с помощью газовой хроматографии, могут включать следующие процессы:

а) потери растворенных газов и наиболее легколетучих органических компонентов вследствие изменений температуры и давления (например, при нагреве водной пробы от исходной температуры водоисточника до температуры лабораторного помещения);

б) исчезновение некоторых подлежащих определению примесных компонентов водных проб в результате химических и микробиологических процессов при хранении до проведения анализа (окисление альдегидов и тиолов, гидролиз ацеталей и галогенопроизводных, микробиологическое расщепление углеводородов нефти и др.);

в) загрязнение проб примесями, извлекаемыми из полимерной тары, используемой при отборе проб и их последующей транспортировке и хранении (пластификаторы, низкомолекулярные компоненты полимеров и т.п.);

г) загрязнение проб примесями, содержащимися в применяемых для экстракции растворителях;

д) изменение проб в испарителях и колонках применяемых хроматографических систем.

Правильно организованный газохроматографический анализ должен в возможно более полной степени исключить все перечисленные выше причины изменения состава анализируемых проб. Этой цели служат многочисленные методики анализа, опубликованные в оригинальных работах, а в ряде случаев и включенные в нормативные документы.

Для извлечения определяемых компонентов из водных матриц применяют методы экстракции малыми объемами органических растворителей с последующим концентрированием путем отгонки экстрагента (рис. 1); твердофазной экстракции с сорбцией определяемых компонентов на адсорбентах с привитой органической неподвижной фазой (углеводородными радикалами от С2H5 до С20Н41, либо функционально замещенными фрагментами с нитрильными, аминными или диольными группами). Разработаны методы микроэкстракции на единичном стеклянном или кварцевом волокне, покрытом пленкой полисилоксановой неподвижной фазы.

Рис. 1. Типичные хроматограммы нефтяных загрязнений, экстрагированных из воды Таганрогского залива: а) - август 1991 г.; б) - октябрь 1991 г.

В пробу анализируемой воды объемом около 100 мл (в конической колбе) помещают магнитную мешалку в форме стеклянной трубки длиной 30 мм и диаметром 2-3 мм с запаянными концами. Внутрь трубки помещают стальной стержень длиной 25 мм и диаметром 1-1,5 мм, а снаружи на трубку надевают отрезок трубки из силиконовой резины длиной 25-30 мм с внутренним диаметром 1 мм и толщиной стенок 0,5 мм. Согласно опубликованным данным перемешивание водной пробы такой мешалкой со скоростью несколько сотен оборотов в минуту в течение 10-15 мин при 20 °С приводит к тому, что более 90% всех липофильных примесей абсорбируется в силиконовой оболочке мешалки. После этого мешалку можно поместить в нагретый испаритель хроматографа для немедленного проведения анализа либо сохранить ее длительное время в закрытой пробирке для транспортировки в стационарную лабораторию.

Подобная техника извлечения и концентрирования малых примесей, названная авторами Stir Bar Sorptive Extraction, несомненно, имеет серьезные перспективы широкого применения. Возможно, что использование таких магнитных мешалок с полимерными покрытиями разных типов позволит избирательно извлекать из водных проб различные группы соединений, отличающиеся по своей полярности и прочим физико-химическим характеристикам.

Для определения состава легколетучих компонентов водных проб оказывается плодотворным метод газохроматографического анализа равновесного пара и газовой экстракции с улавливанием извлекаемых веществ в сорбционных концентраторах и последующим криогенным вводом в капиллярную колонку. Таким способом, например, подробно изучен состав хлорсодержащих микропримесей, образующихся при хлорировании питьевой воды (рис. 2). При извлечении микропримесей полярных веществ, хорошо растворимых в воде, применяют метод экстракции полярными водорастворимыми экстрагентами (спиртом, ацетоном) с предварительным насыщением водных проб неорганическими солями (высаливание хлоридом натрия или сульфатом аммония).

Перейти на страницу: 1 2 3 4 5

Экологические заметки

Автомобильный транспорт как источник загрязнения окружающей среды
Человечество приходит к осознанию необходимости коренной трансформации отношения к природной среде и своей роли в окружающем мире. Решение экологических проблем современного общест ...

Экологическая обстановка в г. Новосибирске
В целом по России качество здоровья населения на протяжении последних десятилетий не только не улучшалось, что было бы естественным в условиях научно-технического прогресса во всех ...

Воздействие малых доз радиации
В данной работе приведен обзор литературы по проблеме воздействия малых доз радиации в понимании современных ученых, приведены результаты проведенных ими длительных экспериментов и ...